Renewable Energy Sources

ESP 313 Masi

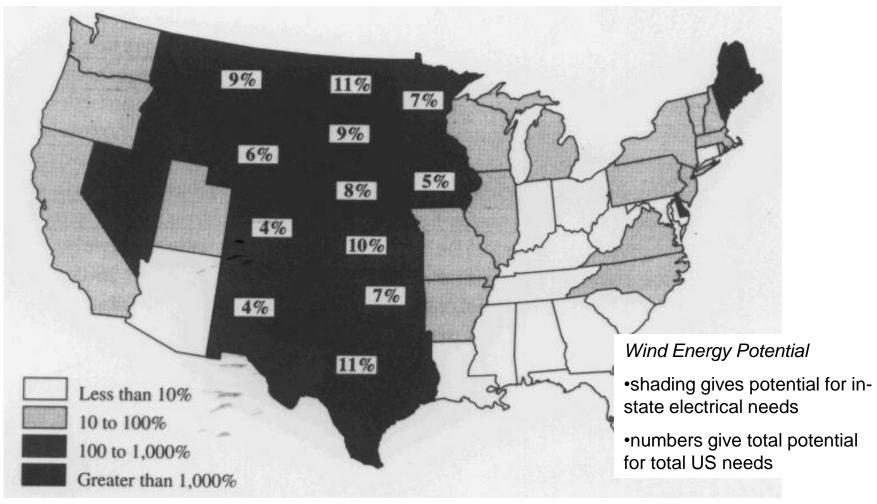
Renewable Energy Sources

- Lecture Question
 - What are the renewable energy sources? Make a list, as comprehensive as possible.
 - What are the environmental impacts of these energy sources?
 - Renewable Energy Sources
 - Radiant solar energy
 - Solar heating (passive and active), solar power plants, photovoltaic cells
 - Biomass energy
 - Direct: combustion of biomass
 - Indirect: chemical conversion to biofuel
 - Wind energy
 - Hydro energy
 - Geothermal energy
 - Power plants, direct use, heat pumps
 - Ocean energy
 - Tidal; salinity-driven

Hydro Energy

Advantages

- Cheap to operate
 - Long life and lower operating costs than all other power plants
- Renewable
- High yield
 - Lower energy cost than any other method
- Pretty plentiful
 - Some countries depend almost entirely on it
- Not intermittent (if reservoir is large enough)
- Reservoirs have multiple uses
 - Flood control, drinking water, aquaculture, recreation
- Less air pollution than fossil fuel combustion


Hydro Energy

- Disadvantages:
 - Human population displacement
 - More significant breeding ground for disease
 - Reduces availability of water downstream
 - Ecosystem impacts
 - Barriers to migrating fish
 - Loss of biodiversity both upstream and downstream
 - Coastal erosion
 - Reduces nutrient flow (dissolved and particulate)
 - Water pollution problems
 - Low dissolved oxygen (DO)
 - Increased H₂S toxicity; other DO-related problems
 - Siltation a big problem (also shortens dam life)
 - Air pollution
 - Actually may be a significant source of GHGs (CH₄, N₂O, CO₂)
 - Decommissioning is a big problem
- The Size Issue
 - Many (most) of the above problems are significantly worse for larger dams
 - However, small dams have shorter lifetimes, less capacity, and are more intermittent

Wind Energy

How it works

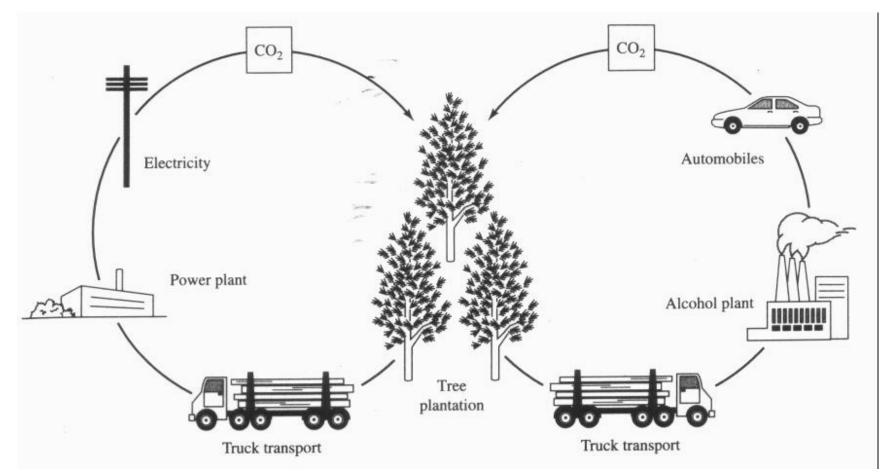
- Wind turbines directly generate electricity
- Quite efficient (not a heat engine)

Wind Energy

- Advantages
 - High net energy yield
 - Renewable and free
 - Very clean source of energy
 - No pollution (air or water) during operation
 - Long operating life
 - Low operating/maintenance costs
 - Can be quickly built; not too expensive
 - Now almost competitive with hydro and fossil fuels
 - Land can be used for other purposes
 - Can combine wind and agricultural farms

Wind Energy

- Disadvantages
 - Energy storage issues
 - An intermittent source of energy; need backup (eg stored energy) for low-wind days
 - Or must be connected to the electrical grid
 - Only practical in areas that are windy enough
 - Visual pollution
 - Danger to birds
 - New (slow turning) designs largely eliminate this problem
 - Low energy density of wind
 - Must use large areas of land


Biomass Energy

- What is it?
 - Biomass energy is the use of living and *recently* dead biological material as an energy source
 - Ultimately dependent on the capture of solar energy and conversion to a chemical (carbohydrate) fuel
 - Theoretically it is a *carbon neutral* and renewable source of energy
- How it works?
 - Traditional: forest management, using wood as fuel
 - Use of biodegradable waste
 - Examples: manure, crop residue, sewage, municipal solid waste
 - Recent interest in agricultural production of *energy crops*
 - Should be high yield and low maintenance
 - Examples: corn, sugarcane, switchgrass, hemp, willow, palm oil, rapeseed, and many others
 - Does not have to be a food crop
 - Recent interest in bioengineered (GM) plants as fuel sources
 - Production of a liquid or gaseous *biofuel*
 - *Biogas* due to the breakdown of biomass in the absence of O₂
 - Includes capture of landfill methane
 - *Bioethanol* from fermentation, often from corn. Cellulosic bioethanol is usually from a grass (switchgrass)
 - *Biodiesel* from rapeseed and other sources

Biomass Energy

Carbon neutral

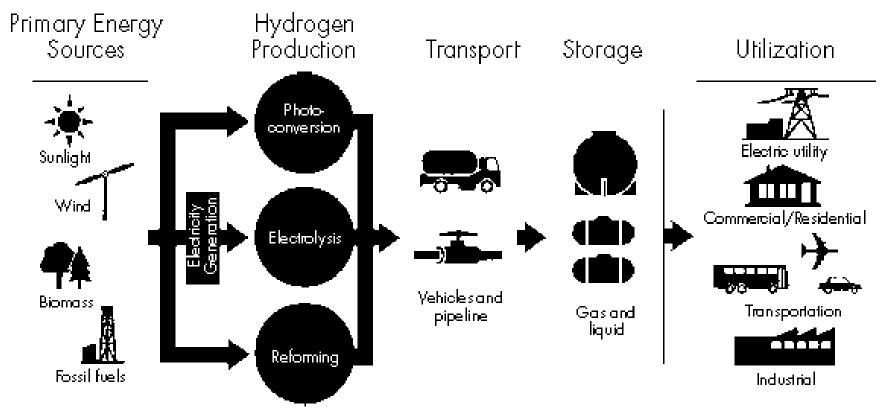
- CO₂ ultimately released in energy generation is *recently* captured and so ideally does not change total atmospheric levels
- Carbon leaks can result in a net increase in CO₂ levels
- Sequestration in soil can result in a net *decrease* in CO₂ levels

Biomass Energy

- Advantages
 - Versatile
 - Renewable
 - No net CO₂ emissions (ideally)
 - Emits less SO_2 and NO_x than fossil fuels
- Disadvantages
 - Low energy density/yield
 - In some cases (eg, corn-derived bioethanol) may yield no net energy
 - Land conversion
 - Biodiversity loss
 - Possible decrease in agricultural food productivity
 - Usual problems associated with intensive agriculture
 - Nutrient pollution
 - Soil depletion
 - Soil erosion
 - Other water pollution problems

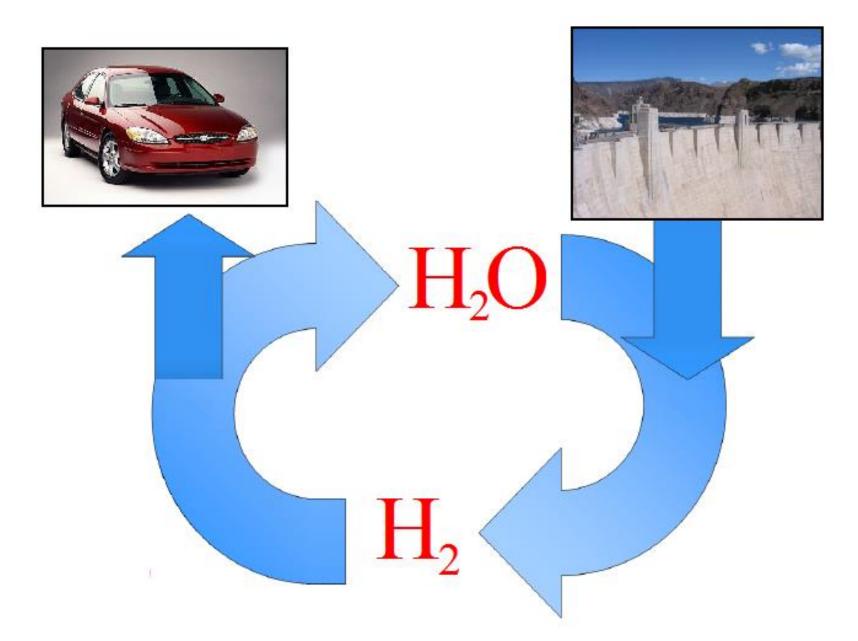
Geothermal Energy

- How it works
 - Geothermal power plants
 - Use earth's heat to power steam turbines
 - Geothermal direct use
 - Use hot springs (etc) as heat source
 - Geothermal heat pumps
- Advantages
 - Renewable
 - Easy to exploit in some cases
 - CO₂ production less than with fossil fuels
 - High net energy yield
- Disadvantages
 - Not available everywhere
 - H₂S pollution
 - Produces some water pollution (somewhat similar to mining)


Radiant Solar Energy

- How it works
 - Solar power plants
 - Steam produced to turn turbine
 - Solar heating
 - Active and passive systems
 - Photovoltaic cells
 - "Solar batteries" use special semiconductors
- Advantages
 - Renewable and free
 - High energy yield
 - A very clean source of energy
 - No air/water pollution during operation
 - Low operating costs
 - Will pay for themselves over time
- Disadvantages
 - Intermittent source
 - Energy storage issues
 - Low energy density
 - Requires pretty much land

The Hydrogen Economy


- Lecture Questions
 - What is the hydrogen economy?
 - Explain how the hydrogen economy could potentially serve as the basis for a renewable energy system that emits little or no air pollution
- Definition
 - The Hydrogen Economy is a hypothetical large-scale system in which elemental hydrogen (H_2) is the primary form of energy storage
 - Fuel cells would be the primary method of conversion of hydrogen to electrical energy.
 - Efficient and clean; scalable
 - In particular, hydrogen (usually) plays a central role in transportation.
- Potential Advantages
 - Clean, renewable
 - Potentially more reliable (using distributed generation)
- BUT many roadblocks including potential showstoppers
 - Poses great technological challenges for efficient hydrogen production, storage, and transport

Components of the Hydrogen Economy

- Infrastructure needs
 - Production
 - Storage
 - Delivery
 - End use

Hydrogen as a Transportation Fuel

Hydrogen Production

Fossil Fuels

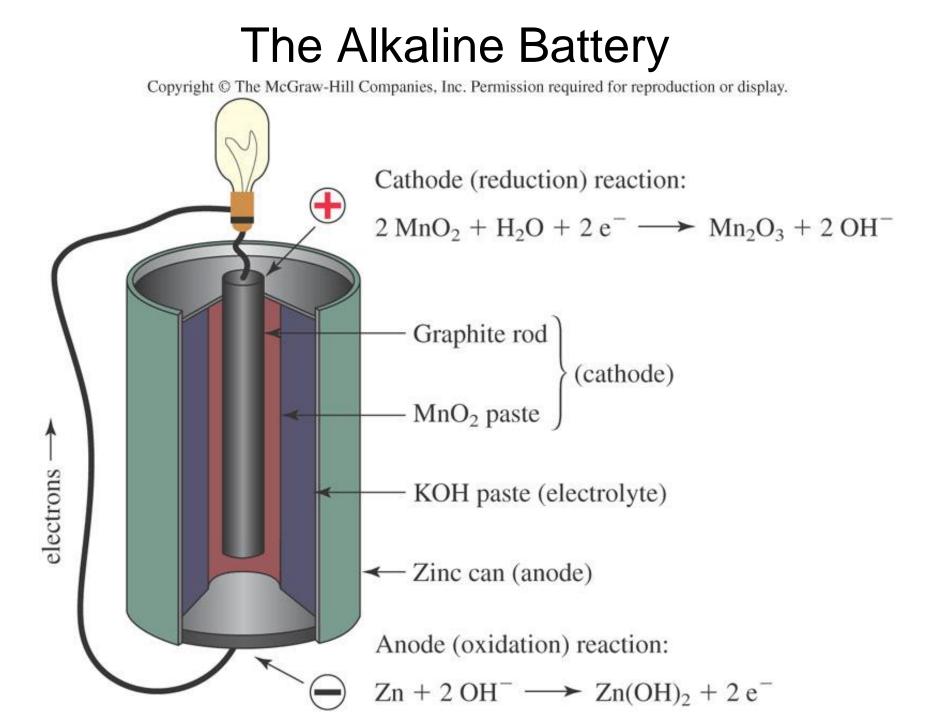
- Steam Reforming of Natural Gas
 - Combination of methane and steam produces hydrogen gas
 - Carbon monoxide is also produced
 - The "water gas shift" reaction can produce further hydrogen from the carbon monoxide. Carbon dioxide is produced too.
 - Most economical; main current method
 - Carbon sequestration one method to reduce CO_2 emission
- Partial Oxidation (POX) of Hydrocarbons
 - HC partially oxidized to produce hydrogen and carbon monoxide
- Coal Gasification
 - Gasified at high temps, then processed
 - Can also be used to get hydrogen from biomass

Hydrogen Production

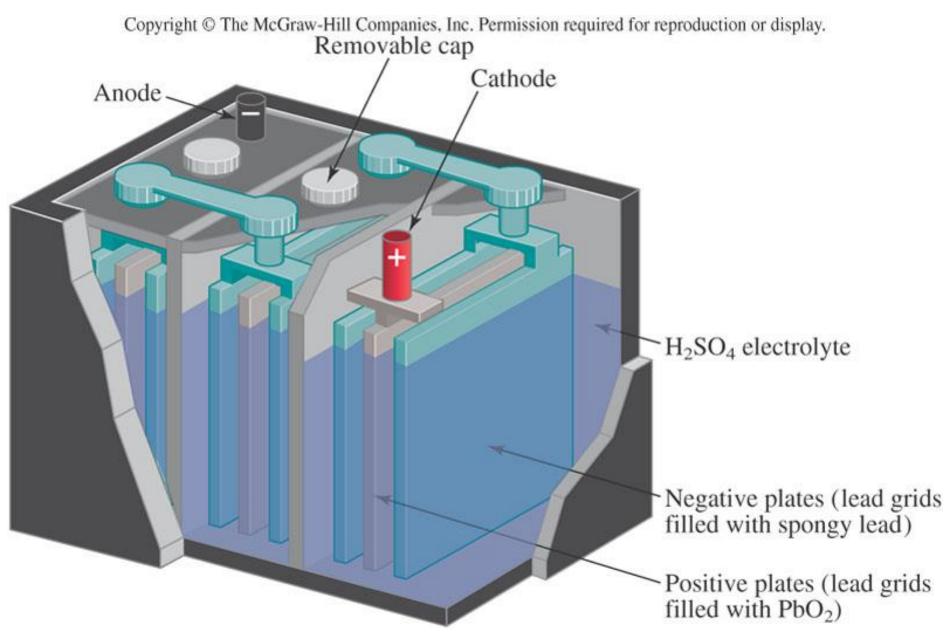
• Electrolysis

- Efficiencies 70-85%
- Produces highest purity of hydrogen
- Currently, the electricity consumed is usually worth more than the hydrogen produced
- Experimental methods
 - Biological hydrogen production
 - Direct photolysis
 - Thermolysis

Renewable Solar Paths to Hydrogen



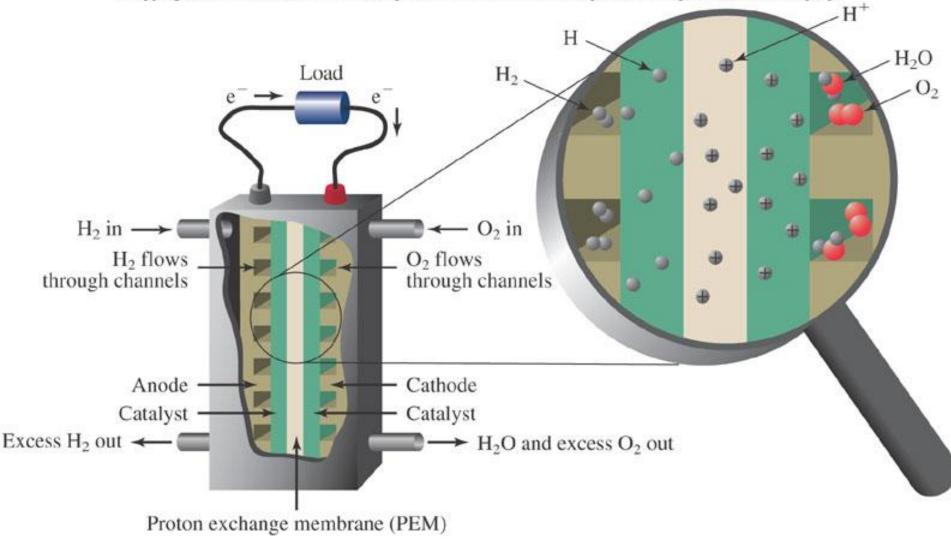
Hydrogen Storage


- Large-Scale Stationary Storage
 - Underground in depleted oil/gas fields, aquifers, caverns
- Intermediate- and Small-Scale Stationary/Mobile Storage
 - The focus of most current research
 - As a liquid
 - Advantage: higher energy density, cheaper transport
 - Disadvantage: economic/energy cost of liquefaction is significant
 - As a compressed gas
 - Probably best short-term method, particularly with advanced materials to decrease weight
 - Advantages
 - Rapid charging/discharging
 - Lower costs than liquid storage
 - Disadvantages:
 - Low energy density, Probably still acceptable for motor vehicles
 - Safety (esp public perception)
 - Metal hydrides
 - Hydrogen is absorbed under pressure, released when heated
 - Less filling pressure needed
 - Low energy density, long recharge time, expensive
- Experimental Methods
 - Improved hydrides; carbon nanotubes; many other materials (eg conversion to ammonia)

Chemical Batteries

- Lecture Questions
 - What are batteries and how do they work?
 - What's the difference between a "regular" and a "rechargeable" battery? Why are rechargeable batteries sometimes referred to as "storage" batteries?
 - Chemical batteries are based on reduction-oxidation (redox) reactions, which are reactions where electron transfer occurs.
 - The oxidation half-reaction occurs at the *anode*
 - Electrons flow from the anode, through an external circuit, and to the *cathode*, where the reduction half-reaction occurs
 - Chemical batteries are a very efficient method of generating electricity
 - Efficiencies of 80% are regularly achieved
 - Significantly (2-3 times) more efficient than heat engines
 - Rechargeable batteries can be hooked up to an external source of electricity to regenerate the redox reactants through electrolysis.
 - Rechargeable batteries thus provide a means of storing electricity in chemical form. They are thus sometimes called *storage batteries*.

The Lead Storage Battery

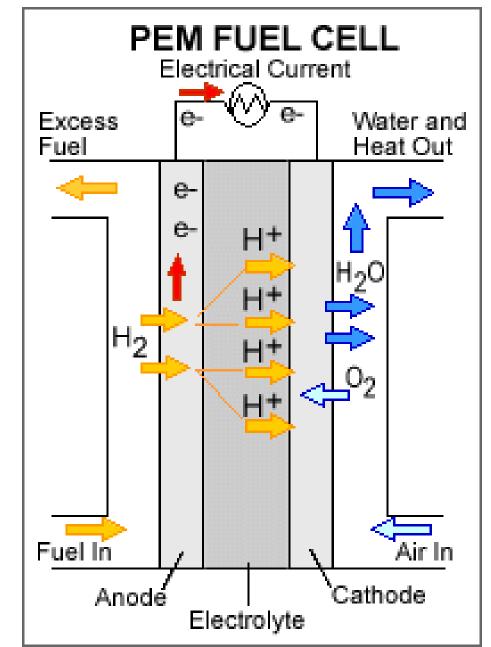


Fuel Cells

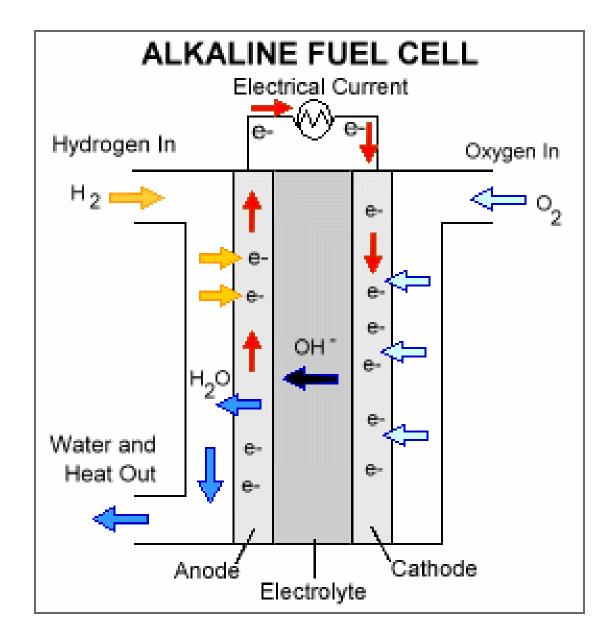
- Lecture Questions
 - What is a fuel cell and how does it work?
 - What is *distributed generation*?
 - A fuel cell is basically a battery in which the reactants are continually supplied to the electrodes, and the products are continually removed.
 - Much more efficient (2-3 times) than heat engines at generating electricity
 - Most common type of fuel cells based on hydrogen (there are others)
 - Fuel cells are scaleable
 - Large ones can power homes or neighborhoods
 - Small ones can be used in appliances
 - Distributed generation is a decentralized power system consisting of hydrogen generators and fuel cells

A Hydrogen Fuel Cell

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Hydrogen Fuel Cells: Scalable


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Polymer Electrolyte Fuel Cell

Alkaline Fuel Cell (AFC)

